Выбор бетона для строительных конструкций

Если коротко, то для следующих строительных конструкций рекомендуют следующие марки бетона:

— подбетонка или подготовка основания для монолитной конструкции — В7,5;

— фундаменты — не ниже В15, но в ряде случаев марка по водонепроницаемости должна быть не ниже W6 (бетон В22,5). Также, согласно еще не принятому приложению Д к СП 28.13330.2012, класс бетона для фундаментов должен быть не ниже В30. Я рекомендую использовать бетон с маркой по водонепроницаемости не ниже W6, что позволит обеспечить долговечность конструкции;

— стены, колонны и другие конструкции расположенные на улице — марка по морозостойкости не ниже F150, а для района с расчетной температурой наружного воздуха ниже -40С — F200.

— внутренние стены, несущие колонны — по расчету, но не ниже В15, для сильно сжатых не ниже В25.

Возможно я не охвачу все нормативы, где может быть прописаны требования к выбору марки бетона, поэтому прошу в комментариях отписаться если есть неточности.

Основными нормируемыми и контролируемыми показателями качества бетона являются:

— класс по прочности на сжатие B;

— класс по прочности на осевое растяжение Bt;

— марка по морозостойкости F;

— марка по водонепроницаемости W;

— марка по средней плотности D.

Класс бетона по прочности на сжатие B

Класс бетона по прочности на сжатие B соответствует значению кубиковой прочности бетона на сжатие в МПа с обеспеченностью 0,95 (нормативная кубиковая прочность) и принимается в пределах от B 0,5 до B 120.

Это основной параметр бетона, который определяет его прочность на сжатие. Например, класс бетона В15 означает, что после 28 дней при температуре застывания 20°С прочность бетона будет 15 МПа. Однако в расчетах используют другую цифру. Расчетное сопротивление бетона (Rb) сжатию можно найти в таблице 5.2 СП 52-101-2003

Таблица 5.2 СП 52-101-2003

Вид сопротивления Расчетные значения сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа, при классе бетона по прочности на сжатие
В10 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60
Сжатие осевое (призменная прочность) Rb 6,0 8,5 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0
Растяжение осевое Rbt 0,56 0,75 0,9 1,05 1,15 1,3 1,4 1,5 1,6 1,7 1,8

Почему прочность замеряют именно через 28 дней? Потому, что бетон набирает прочность всю жизнь, но после 28 дней прирост прочности уже не такой большой. Через одну неделю после заливки прочность бетона может быть 65% от нормативной (зависит от температуры твердения), через 2 недели будет 80%, через 28 дней прочность достигнет 100%, через 100 суток будет 140% от нормативной. При проектировании есть понятие прочности через 28 дней, и оно принимается за 100%.

Также известна классификация по марке бетона M и цифрами от 50 до 1000. Цифра обозначает предел прочности на сжатие в кг/см². Различие в классе бетона B и марке бетона M заключается в методе определения прочности. Для марки бетона это средняя величина силы сжатия при испытаниях после 28 дней выдержки образца, выраженная в кг/см². Данная прочность обеспечивается в 50% случаях. Класс бетона B гарантирует прочность бетона в 95% случаях. Т.е. прочность бетона варьируется и зависит от многих факторов, не всегда можно добиться нужной прочности и бывают отклонения от проектной прочности. Например, марка бетона М100 обеспечивает прочность бетона после 28 дней в 100 кг/см² в 50% случаев. Но для проектирования это как-то слишком мало, поэтому ввели понятие класс бетона. Бетон B15 гарантирует прочность в 15 МПа после 28 дней в 95% случаях.

В проектной документации бетон обозначается только классом B, но в строительной практике марка бетона всё еще применяется.

Определить класс бетона по марке и наоборот можно по следующей таблице:

Класс бетона по прочности на сжатие Средняя прочность бетона данного класса, кгс/см² Ближайшая марка бетона по прочности на сжатие Отклонения ближайшей марки бетона от средней прочности бетона этого класса, %

В3,5

45,84

М50

+9,1

В5

65,48

М75

+14,5

В7,5

98,23

М100

+1,8

В10

130,97

М150

+14,5

В12,5

163,71

М150

-8,4

В15

196,45

М200

+1,8

В20

261,94

М250

-4,6

В22,5

294,68

М300

+1,8

В25

327,42

М350

+6,9

В27,5

360,16

М350

-2,8

В30

392,90

М400

+1,8

В35

458,39

М450

-1,8

В40

523,87

М500

-4,6

Класс бетона по прочности на осевое растяжение Bt соответствует значению прочности бетона на осевое растяжение в МПа с обеспеченностью 0,95 (нормативная прочность бетона) и принимается в пределах от Bt 0,4 до Bt 6.

Допускается принимать иное значение обеспеченности прочности бетона на сжатие и осевое растяжение в соответствии с требованиями нормативных документов для отдельных специальных видов сооружений (например, для массивных гидротехнических сооружений).

Марка бетона по морозостойкости F соответствует минимальному числу циклов попеременного замораживания и оттаивания, выдерживаемых образцом при стандартном испытании, и принимается в пределах от F 15 до F 1000.

Марка бетона по водонепроницаемости W соответствует максимальному значению давления воды (МПа · 10-1), выдерживаемому бетонным образцом при испытании, и принимается в пределах от W 2 до W 20.

Марка по средней плотности D соответствует среднему значению объемной массы бетона в кг/м3 и принимается в пределах от D 200 до D 5000.

Также встречается маркировка бетона по подвижности (П) или указывается осадка конуса. Чем выше число П, тем бетон более жидкий и с ним легче работать.

Для напрягающих бетонов устанавливают марку по самонапряжению.

Подбор марки бетона по прочности

Минимальный класс бетона для конструкций назначается согласно СП 28.13330.2012 и СП 63.13330.2012.

Для любых железобетонных строительных конструкций класс бетона должен быть не ниже В15 (п.6.1.6 СП 63.12220.2012).

Для предварительно напряженных железобетонных конструкций класс бетона по прочности на сжатие следует принимать в зависимости от вида и класса напрягаемой арматуры, но не ниже В20 (п.6.1.6 СП 63.12220.2012).

Железобетонный ростверк из сборного железобетона должен быть выполнен из бетона не ниже кл. В20 (п. 6.8 СП 50-102-2003)

Класс бетона для конструкций назначают согласно прочностному расчету по технико-экономическим соображениям, например, на нижних этажах здания монолитные колонны имеют большую прочность т.к. нагрузка на них выше, на верхних этажах класс бетона уменьшается, что позволяет использовать колонны одного сечения на всех этажах.

Также есть рекомендации СП 28.13330.2012. Согласно постановлению 1521 от 26.12.2014 приложения А и Д СП 28.13330.2012 не входят в обязательный перечень, т.е. рекомендуются, но рекомендую обратить своё внимание на эти приложения  т.к., возможно, скоро они будут обязательными для применения. Прежде всего необходимо сделать классификацию конструкцию по среде эксплуатации согласно таблице А.1 СП 28.13330.2012:

Таблица А.1 — Среды эксплуатации

Индекс Среда эксплуатации Примеры конструкций
  1. Среда без признаков агрессии
ХО Для бетона без арматуры и закладных деталей: все среды, кроме воздействия замораживания — оттаивания, истирания или химической агрессии.Для железобетона: сухая Конструкции внутри помещений с сухим режимом эксплуатации
  1. Коррозия арматуры вследствие карбонизации
ХС1 Сухая и постоянно влажная среда Конструкции помещений в жилых домах, за исключением кухонь, ванных, прачечных.Бетон постоянно под водой
ХС2 Влажная и кратковременно сухая среда Поверхности бетона, длительно смачиваемые водой. Фундаменты
ХС3 Умеренно влажная среда (влажные помещения, влажный климат) Конструкции, на которые часто или постоянно воздействует наружный воздух без увлажнения атмосферными осадками. Конструкции под навесом. Конструкции внутри помещений с высокой влажностью (общественные кухни, ванные, прачечные, крытые бассейны, помещения для скота)
ХС4 Переменное увлажнение и высушивание Наружные конструкции, подвергающиеся действию дождя
  1. Коррозия вследствие действия хлоридов (кроме морской воды)
В случае, когда бетон, содержащий стальную арматуру или закладные детали, подвергается действию хлоридов, включая соли, применяемые как антиобледенители, агрессивная среда классифицируется по следующим показателям:
XD1 Среда с умеренной влажностью Конструкции, подвергающиеся воздействию аэрозоля солей хлоридов
XD2 Влажный и редко сухой режим эксплуатации Плавательные бассейны. Конструкции, подвергающиеся воздействию промышленных сточных вод, содержащих хлориды
XD3 Переменное увлажнение и высушивание Конструкции мостов, подвергающиеся обрызгиванию растворами противогололедных реагентов. Покрытие дорог. Перекрытия парковок
  1. Коррозия, вызванная действием морской воды
В случае, когда бетон, содержащий стальную арматуру или закладные детали, подвергается действию хлоридов из морской воды или аэрозолей морской воды, агрессивная среда классифицируется по следующим показателям:
XS1 Воздействие аэрозолей, но без прямого контакта с морской водой Береговые сооружения
XS2 Под водой Подводные части морских сооружений
XS3 Зона прилива и отлива, обрызгивания Части морских сооружений в зоне переменного уровня воды
Примечание — Для морской воды с различным содержанием хлоридов требования к бетону указаны в таблице Г.1
  1. Коррозия бетона, вызванная попеременным замораживанием и оттаиванием, в присутствии или без солей противообледенителей
При действии на насыщенный водой бетон переменного замораживания и оттаивания агрессивная среда классифицируется по следующим признакам:
XF1 Умеренное водонасыщение без антиобледенителей Вертикальные поверхности зданий и сооружений при действии дождя и мороза
XF2 Умеренное водонасыщение с антиобледенителями Вертикальные поверхности зданий и сооружений, подвергающиеся обрызгиванию растворами антиобледенителей и замораживанию
XF3 Сильное водонасыщение без антиобледенителей Сооружения при действии дождей и мороза
XF4 Сильное водонасыщение растворами солей антиобледенителей или морской водой Дорожные покрытия, обрабатываемые противогололедными реагентами. Горизонтальные поверхности мостов, ступени наружных лестниц и др. Зона переменного уровня для морских сооружений при действии мороза
  1. Химическая и биологическая агрессия
При действии химических агентов из почвы, подземных вод, коррозионная среда классифицируется по следующим признакам:
ХА1 Незначительное содержание агрессивных агентов — слабая степень агрессивности среды по таблицам В.1 — В.7, Г.2 Конструкции в подземных водах
ХА2 Умеренное содержание агрессивных агентов — средняя степень агрессивности среды по таблицам В.1 — В.7, Г.2 Конструкции, находящиеся в контакте с морской водой. Конструкции в агрессивных грунтах
ХА3 Высокое содержание агрессивных агентов — сильная степень агрессивности среды по таблицам В.1 — В.7, Г.2 Промышленные водоочистные сооружения с химическими агрессивными стоками. Кормушки в животноводстве. Градирни с системами газоочистки
  1. Коррозия бетона вследствие реакции щелочей с кремнеземом заполнителей
В зависимости от влажности среда классифицируется по следующим признакам:
WO Бетон находится в сухой среде Конструкции внутри сухих помещений. Конструкции в наружном воздухе вне действия осадков, поверхностных вод и грунтовой влаги
WF Бетон часто или длительно увлажняется Наружные конструкции, не защищенные от воздействия осадков, поверхностных вод и грунтовой влаги.Конструкции во влажных помещениях, например, бассейнах, прачечных и других помещениях с относительной влажностью преимущественноболее 80 %.Конструкции, часто подвергающиеся действию конденсата, например, трубы, станции теплообменников, фильтровальные камеры,животноводческие помещения.Массивные конструкции, минимальный размер которых превосходит 0,8 м, независимо от доступа влаги
WA Бетон, на который помимо воздействий среды WF действуют часто или длительно щелочи, поступающие извне Конструкции, подвергающиеся воздействию морской воды.Конструкции, на которые воздействуют противогололедные соли без дополнительного динамического воздействия (например, зона обрызгивания).Конструкции промышленных и сельскохозяйственных зданий (например, шламонакопители), подвергающиеся воздействию щелочных солей
WS Бетон с высокими динамическими нагрузками и прямым воздействием щелочей Конструкции, подвергающиеся воздействию противогололедных солей и дополнительно высоким динамическим нагрузкам (например, бетон дорожных покрытий)
Примечание — Агрессивное воздействие должно быть дополнительно изучено в случае:действия химических агентов, не указанных в таблицах Б.2, Б.4, В.3;высокой скорости (более 1 м/с) течения воды, содержащей химические агенты по таблицам В.3, В.4, В.5.

В зависимости от выбранной среды эксплуатации назначаем класс бетона для конструкции по таблице Д.1 СП 28.13330.2012.

Таблица Д.1 — Требования к бетонам в зависимости от классов сред эксплуатации

Требования к бетонам Классы сред эксплуатации
Неагрессивная среда Карбонизация Хлоридная коррозия Замораживание — оттаивание1) Химическая коррозия
Морская вода Прочие хлоридные воздействия
Индексы сред эксплуатации
ХО ХС1 ХС2 ХС3 ХС4 XS1 XS2 XS3 XD1 XD2 XD3 XF1 XF2 XF3 XF4 ХА1 ХА2 ХА3
Минимальный класс по прочности В 15 25 30 37 37 37 45 45 37 45 45 37 37 37 37 37 37 45
Минимальный расход цемента, кг/м3 260 280 280 300 300 320 340 300 300 320 300 300 320 340 300 320 360
Минимальное воздухо-содержание, % 4,0 4,0 4,0
Прочие требования Заполнитель с необходимой морозостойкостью Сульфатостойкий цемент2)
Приведенные в колонках требования назначаются совместно с требованиями, указанными в следующих таблицах Д.2, Ж.5 Г.1, Д.2 Г.1, Д.2 Ж.1 В.1 — В.5, Д.2
1) Для эксплуатации в условиях попеременного замораживания — оттаивания бетон должен быть испытан на морозостойкость.2) Когда содержание  соответствует ХА2 и ХА3, целесообразно применение сульфатостойкого цемента.3) Значения величин в данной таблице относятся к бетону на цементе класса СЕМ 1 по ГОСТ 30515 и заполнителе с максимальной крупностью 20 — 30 мм.

Если посмотреть на эти требования, то для фундамента нужно принимать бетон минимум В30 (среда XC2). Однако пока это рекомендуемые требования, которые в перспективе станут обязательными (или не станут, кто его знает?)

Подбор марки бетона по водонепроницаемости

Марки бетона по водонепроницаемости подбирается согласно таблицам В.1-В.8 СП 28.13330.2012 в зависимости от степени агрессивности среды. Данные по агрессивности грунтов указываются в инженерно-геологических изысканиях и там же обычно пишут рекомендуемую марку по водонепроницаемости.

Для свай и необходимо применять бетон марки по водонепроницаемости не ниже W6 (п.15.3.25 СП 50-102-2003). Такую марку имеет бетон В22,5, поэтому нужно это учитывать при подборе класса бетона.

Для надземных конструкций, подвергаемых атмосферным воздействиям при расчетной отрицательной температуре наружного воздуха выше минус 40 °С, а также для наружных стен отапливаемых зданий марку бетона по водонепроницаемости не нормируют (п.6.1.9 СП 63.13330.2012).

Подбор марки бетона по морозостойкости

Подбор марки бетона по морозостойкости производится согласно таблицам Ж.1, Ж.2 СП 28.13330.2012 в зависимости от расчётной температуры наружного воздуха.

Таблица Ж.1 — Требования к бетону конструкций, работающих в условиях знакопеременных температур

tablicag1sp28-3

Таблица Ж.2 — Требования к морозостойкости бетона стеновых конструкций

Условия работы конструкций Минимальная марка бетона по морозостойкости наружных стен отапливаемых зданий из бетонов
Относительная влажность внутреннего воздуха помещения jint, % Расчетная зимняя температура наружного воздуха, °C легкого, ячеистого, поризованного тяжелого и мелкозернистого
jint > 75 Ниже -40 F100 F200
Ниже -20 до -40 включ. F75 F100
Ниже -5 до -20 включ. F50 F70
— 5 и выше F35 F50
60 < jint £ 75 Ниже -40 F75 F100
Ниже -20 до -40 включ. F50 F50
Ниже -5 до -20 включ. F35
— 5 и выше F25
jint £ 60 Ниже -40 F50 F75
Ниже -20 до -40 включ. F35
Ниже -5 до -20 включ. F25
— 5 и выше F15*
* Для легких бетонов марка по морозостойкости не нормируется.

Примечания

1. При наличии паро- и гидроизоляции конструкций марки бетонов по морозостойкости, указанные в настоящей таблице, могут быть снижены на один уровень.

2. Расчетная зимняя температура наружного воздуха принимается согласно СП 131.13330 как температура наиболее холодной пятидневки.

3. Марка ячеистого бетона по морозостойкости устанавливается по ГОСТ 25485.

Расчетная зимняя температура наружного воздуха для расчета железобетонных конструкций принимается по средней температуре воздуха наиболее холодной пятидневки с обеспеченностью 0,98 в зависимости от района строительства согласно СП 131.13330.2012.

В грунтах с положительной температурой, ниже уровня промерзания на 0,5 м, морозостойкость не нормируется (СП 8.16 СП 24.13330.2011)

Например, для Москвы температура наиболее холодной пятидневки с обеспеченностью 0,98 равна минус 29 °С. Тогда марка бетона по морозостойкости равна F150 (Характеристика режима — Возможное эпизодическое воздействие температуры ниже 0 °C а) в водонасыщенном состоянии, например, конструкции, находящиеся в грунте или под водой).

Защитный слой бетона

Чтобы арматура не оголилась со временем существуют требования по минимальной толщине слоя бетона для защиты арматуры. Согласно пособию по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры СП 52-101-2003 минимальная толщина защитного слоя определяется по таблице 5.1 Пособия к СП 52-101-2003:

Таблица 5.1 Пособия к СП 52-101-2003

№ п/п Условия эксплуатации конструкций здания Толщина защитного слоя бетона, мм, не менее
1. В закрытых помещениях при нормальной и пониженной влажности 20
2. В закрытых помещениях при повышенной влажности (при отсутствии дополнительных защитных мероприятий) 25
3. На открытом воздухе (при отсутствии дополнительных защитных мероприятий) 30
4. В грунте (при отсутствии дополнительных защитных мероприятий), в фундаментах при наличии бетонной подготовки 40
5. В монолитных фундаментах при отсутствии бетонной подготовки 70

Для сборных железобетонных элементов толщину защитного слоя можно уменьшить на 5 мм от данных таблицы 8.1 СП 52-101-2003 (п.8.3.2).

Для буронабивных свай защитный слой бетона составляет не менее 50 мм (п. 8.16 СП 24.13330.2011), для буронабивных свай фундаментов мостов 100 мм.

Для буронабивных свай, используемых как защитные ограждения, защитный слой бетона принимается 80-100 мм (п. 5.2.12 Методического пособия по устройству ограждений из буронабивных свай).

Также во всех случаях толщина защитного слоя не может быть меньше толщины арматуры.

Защитный слой бетона считается от наружной поверхности до поверхности арматуры (не до оси арматуры).

Защитный слой бетона обычно обеспечивается использованием фиксаторов:

fiks1

fiks2

Расчетные значения сопротивления бетона

СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения

Расчетные значения сопротивления бетона осевому сжатию Rb определяют по формуле 6.1 СП 63.13330.2012:

f6.1sp63

Расчетные значения сопротивления бетона осевому растяжению Rbt определяют по формуле 6.2 СП 63.13330.2012:

f6.2sp63

Значения коэффициента надежности по бетону при сжатии γb принимают равными:

для расчета по предельным состояниям первой группы:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

1,5 — для ячеистого бетона;

для расчета по предельным состояниям второй группы: 1,0.

Значения коэффициента надежности по бетону при растяжении γbt принимают равными:

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на сжатие:

1,5 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

2,3 — для ячеистого бетона;

для расчета по предельным состояниям первой группы при назначении класса бетона по прочности на растяжение:

1,3 — для тяжелого, мелкозернистого, напрягающего и легкого бетонов;

для расчета по предельным состояниям второй группы: 1,0.

(п. 6.1.11 СП 63.13330.2012)

В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы γbt, учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.):

а) γb1 — для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rb и Rbt и учитывающий влияние длительности действия статической нагрузки:

γb1 = 1,0 при непродолжительном (кратковременном) действии нагрузки;

γb1 = 0,9 при продолжительном (длительном) действии нагрузки. Для ячеистых и поризованных бетонов γb1 = 0,85;

б) γb2 — для бетонных конструкций, вводимый к расчетным значениям сопротивления Rb и учитывающий характер разрушения таких конструкций, γb2 = 0,9;

в) γb3 — для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb, γb3 = 0,85;

г) γb4 — для ячеистых бетонов, вводимый к расчетному значению сопротивления бетона Rb:

γb4 = 1,00 — при влажности ячеистого бетона 10 % и менее;

γb4 = 0,85 — при влажности ячеистого бетона более 25 %;

по интерполяции — при влажности ячеистого бетона свыше 10 % и менее 25 %.

Влияние попеременного замораживания и оттаивания, а также отрицательных температур, учитывают коэффициентом условий работы бетона γb5 £ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40 °С и выше, принимают коэффициент γb5 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно специальным указаниям.

(п. 6.1.12 СП 63.13330.2012)

Для свайных фундаментов согласно СП 24.13330.2011 Свайные фундаменты, п. 7.1.9

7.1.9 При расчете набивных, буровых свай и баретт (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с понижающим коэффициентом условий работы γcb = 0,85, учитывающим бетонирование в узком пространстве скважин и обсадных труб, и дополнительного понижающего коэффициента γ’cb, учитывающего влияние способа производства свайных работ:

а) в глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай, γ’cb = 1,0;

б) в грунтах, бурение скважин и бетонирование в которых производят насухо с применением извлекаемых обсадных труб или полых шнеков, γ’cb = 0,9;

в) в грунтах, бурение скважин и бетонирование в которых осуществляют при наличии в них воды с применением извлекаемых обсадных труб или полых шнеков, γ’cb = 0,8;

г) в грунтах, бурение скважин и бетонирование в которых выполняют под глинистым раствором или под избыточным давлением воды (без обсадных труб), γ’cb = 0,7.

Параметры для расчета железобетонных конструкций:

Параметры для расчета железобетонных конструкций приведены в СП 63.13330.2012:

Таблица 6.7

Вид Бетон Нормативные сопротивления бетона Rb,n, Rbt,n, МПа, и расчетные сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser, МПа, при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Сжатие осевое (призменная прочность) Rb,n, Rb,ser Тяжелый, мелкозернистый и напрягающий 2,7 3,5 5,5 7,5 9,5 11 15 18,5 22 25,5 29 32 36 39,5 43 50 57 64 71
Легкий 1,9 2,7 3,5 5,5 7,5 9,5 11 15 18,5 22 25,5 29
Ячеистый 1,4 1,9 2,4 3,3 4,6 6,9 9,0 10,5 11,5
Растяжение осевое Rbt,n и Rbt,ser Тяжелый, мелкозернистый и напрягающий 0,39 0,55 0,70 0,85 1,00 1,10 1,35 1,55 1,75 1,95 2,10 2,25 2,45 2,60 2,75 3,00 3,30 3,60 3,80
Легкий 0,29 0,39 0,55 0,70 0,85 1,00 1,10 1,35 1,55 1,75 1,95 2,10
Ячеистый 0,22 0,26 0,31 0,41 0,55 0,63 0,89 1,00 1,05
Примечания

1 Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

2 Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений Rbt,n, Rbt,ser следует принимать с умножением на коэффициент 0,8.

3 Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений Rbt,n, Rbt,ser следует принимать как для легкого бетона с умножением на коэффициент 0,7.

4 Для напрягающего бетона значения Rbt,n, Rbt,ser следует принимать с умножением на коэффициент 1,2.

Таблица 6.8

Вид Бетон Расчетные сопротивления бетона Rb, Rbt, МПа, для предельных состояний первой группы при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 в30 B35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Сжатие осевое (призменная прочность) Тяжелый, мелкозернистый и напрягающий 2,1 2,8 4,5 6,0 7,5 8,5 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0 37,0 41,0 44,0 47,5
Легкий 1,5 2,1 2,8 4,5 6,0 7,5 8,5 11,5 14,5 17,0 19,5 22,0
Ячеистый 0,95 1,3 1,6 2,2 3,1 4,6 6,0 7,0 7,7
Растяжение осевое Тяжелый, мелкозернистый и напрягающий 0,26 0,37 0,48 0,56 0,66 0,75 0,90 1,05 1,15 1,30 1,40 1,50 1,60 1,70 1,80 1,90 2,10 2,15 2,20
Легкий 0,20 0,26 0,37 0,48 0,56 0,66 0,75 0,90 1,05 1,15 1,30 1,40
Ячеистый 0,09 0,12 0,14 0,18 0,24 0,28 0,39 0,44 0,46

 

Таблица 6.11

Бетон Значения начального модуля упругости бетона при сжатии и растяжении Eb, МПа × 10-3, при классе бетона по прочности на сжатие
В1,5 В2 В2,5 В3,5 В5 В7,5 в10 В12,5 B15 B20 B25 в30 В35 В40 В45 В50 В55 В60 В70 В80 В90 В100
Тяжелый 9,5 13,0 16,0 19,0 21,5 24,0 27,5 30,0 32,5 34,5 36,0 37,0 38,0 39,0 39,5 41,0 42,0 42,5 43
Мелкозернистый групп:
А — естественного твердения 7,0 10 13,5 15,5 17,5 19,5 22,0 24,0 26,0 27,5 28,5
Б — автоклавного твердения 16,5 18,0 19,5 21,0 22,0 23,0 23,5 24,0 24,5 25,0
Легкий и порисованный марки по средней плотности:
D800 4,0 4,5 5,0 5,5
D1000 5,0 5,5 6,3 7,2 8,0 8,4
D1200 6,0 6,7 7,6 8,7 9,5 10,0 10,5
D1400 7,0 7,8 8,8 10,0 11,0 11,7 12,5 13,5 14,5 15,5
D1600 9,0 10,0 11,5 12,5 13,2 14,0 15,5 16,5 17,5 18,0
D1800 11,2 13,0 14,0 14,7 15,5 17,0 18,5 19,5 20,5 21,0
D2000 14,5 16,0 17,0 18,0 19,5 21,0 22,0 23,0 23,5
Ячеистый автоклавного твердения марки по средней плотности:
D500 1,4
D600 1,7 1,8 2,1
D700 1,9 2,2 2,5 2,9
D800 2,9 3,4 4,0
D900 3,8 4,5 5,5
D1000 5,0 6,0 7,0
D1100 6,8 7,9 8,3 8,6
D1200 8,4 8,8 9,3
Примечания

1 Для мелкозернистого бетона группы А, подвергнутого тепловой обработке или при атмосферном давлении, значения начальных модулей упругости бетона следует принимать с коэффициентом 0,89.

2 Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3 Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4 Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент α = 0,56 + 0,006 В.

С этой таблицей нужно быть внимательнее – данные даны не в 10-3 МПа, а в МПа х 10-3, т.е. в ГПа или 1000 МПа. Например, модуль упругости для бетона В25 равен 30 ГПа = 30*1000 МПа. Не знаю зачем составители данной таблицы так намудрили, но новички ловятся на этом.

Обозначение бетона на чертежах

В спецификации бетон маркируется согласно ГОСТ 26633-2012. Например: Бетон В25 F200 W8 означает, что бетон принят по прочности класса B25, по морозостойкости марки 200, по водонепроницаемости W8.

На разрезах и сечениях бетон обозначается штриховкой согласно ГОСТ 2.306-68, но там нет штриховки железобетона. Тем не менее в строительных чертежах применяют штриховку согласно ГОСТ Р 21.1207-97 (стандарт отменен, но тем не менее штриховки используют эти).

gost211207

Литература:

  1. СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры (pdf);
  2. Пособие к СП 52-101-2003 Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (pdf)
  3. СП 63.13330.2012 (Актуализированная редакция СНиП 52-01-2003) Бетонные и железобетонные конструкции. Основные положения (pdf);
  4. СП 24.13330.2011 (Актуализированная редакция СНиП 2.02.03-85) Свайные фундаменты (pdf);
  5. СП 28.13330.2012 (Актуализированная редакция СНиП 2.03.11-85) Защита строительных конструкций от коррозии (pdf);
  6. СП 52-105-2009 Железобетонные конструкции в холодном климате и на вечномерзлых грунтах (pdf).

This article has 4 Comments

    1. Прочность бетона, водонепроницаемость и морозостойкость конечно взаимосвязаны друг с другом. Конечно если требуется по нормативным требованиям применять бетон с водонепроницаемостью W6, то прочность бетона будет не ниже В20. Спасибо за ссылку на письмо, но это письмо не имеет официального статуса. Это просто письмо ООО «Лиац». Хотя они в чем-то правы, но цифры в письме не совсем верны. Например бетон с морозостойкостью F150 может быть В20, а согласно их письмо В27,5.

  1. Минимальный класс бетона для фундаментов В15, морозостойкость подбирается по СП 28. 13330.2012, водонепроницаемость по данным геологии (к какому бетону не агрессивны воды) но не менее чем указано в ГОСТ 31384-2008. Итого для Москвы надо писать B15, F150, W4, ну а чтобы добиться F150, W4, класс бетона выростет до В20 и больше, но это уже не проблема проектировщика.

  2. Денис, приветствую!
    помоги разобраться с таким вопросом:
    почему нормативная прочность бетона В55 на сжатие (39.5 МПа), указанная в СП52 настолько меньше средней прочности, указанной в ГОСТ 26633 (720.3 кгс/см2 = 70.6 МПа)

Добавить комментарий для Александр Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *